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As always, we refer to the example of fluids. Consider the velocity field u(r),
and we will stack up the gradients for each component of velocity ∇ux ·δr ≈ δux

into a matrix G:
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 (1)

from which we can write sensible-looking statements such as δu ≈ Gδr. We are
simple folk, so we manipulate G into a more interesting form by:

G =
1

2
(G+G) (Multiplication by 1)

G =
1

2
(G+G⊺ +G−G⊺) (Addition of 0)

G =
1

2
(G+G⊺) +

1

2
(G−G⊺)

G = D +W

(2)

where we have a symmetric matrix D and an antisymmetric matrix W . Let’s
look at W first:
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which already looks awfully familiar. Taking the Cartesian definition of the curl,
ω = ∇× u, we find:

W =
1

2

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 =
1

2
[ω]× (4)

and this final notation expresses the fact that this is the ‘cross-product matrix’
form of ω, i.e.

Wv =
1

2
ω × v. (5)

We are going to consider a little piece of fluid — the reader is free to choose
whether they prefer to think in terms of cubes, spheres or potatoes: the results
hold regardless. For a point within the fluid around r0:

u(r0 + δr) ≈ u(r0) +G(r0)δr

≈ u(r0) +D(r0)δr+W (r0)δr

≈ u(r0) +D(r0)δr+
1

2
ω × δr

(6)
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We already see the relationship between curl and local rigid-body rotation (and
why factors of two start springing up). Let’s turn our attention to D:
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 (7)

Being symmetric, we know that it has real eigenvalues and orthogonal eigenvec-
tors, which represents the stretching of a sphere into an ellipsoid (and therefore
contains the information about the deformation of our fluid chunk). You may
have encountered the trace of a matrix before (the sum of the diagonal):

tr(D) =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= ∇ · u

= λ1 + λ2 + λ3

(8)

where the λ are the eigenvalues of D. Supposing that our fluid is incompressible,
∇ · u = 0, and so the sum of the eigenvalues of D must be zero. Is this just
serendipity, or can we pull a physical interpretation out of this?

Considering the chunk of fluid deforming, each particle moves to a new
position r(t0 + δt) ≈ r(t0) + uδt. Defining the chunk mass m(t) by the integral

m(t) =

∫
r∈R(t)

ρ(r)dV (9)

where R(t) is the set of points defined by the pointwise evolution of the set
R0 = R(t0). As long as we define our R0 nicely enough (e.g. small spheres or
cubes), this integral is meaningful in the intuitive sense without needing to do
anything special.

In the case of ρ constant, we are simply tracking the volume of the chunk.
Conservation of mass therefore requires that

∂

∂t

{∫
r∈R(t)

dV

}
= 0. (10)

Our particles within the chunk have all translated an amount u(r0)δt, so (in a
somewhat clumsy notation) our new offset is

δr(t0 + δt) ≈ δr0 +D(r0)δr0δt+
1

2
ω × δr0δt (11)

with a rotation term (no volume change, but we will still consider it as though
it could change volumes for completeness) alongside the deformation from D.
The transformation looks like I +Gδt, and we want to know what det(I +Gδt)
is (since we are interested in volume changes). Fortunately, Jacobi has done all
the hard work for us:

d

dt
det(A(t)) = tr

(
adj(A(t))

dA(t)

dt

)
(12)

and we have the simple job of plugging in dA/dt = G and A(t0) = I (hence
adj(A(t0)) = I), finding that the rate of change of volume is simply the trace
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of G (which is contained in D, justifying the claim that the rotation could not
change volumes), therefore mass is conserved if tr(G) = tr(D) = ∇ · u = 0, and
we can all go home happy1.

And so we reach the ‘whatever’s left over’ part. In continuum mechanics,
where tensors are often used, the quantities dij and ωij are often referred to
as the ‘rate of strain’ and ‘spin/rotation’ tensors, corresponding to our D and
W . We’re yet to do anything particularly interesting with the off-diagonal
elements of D, beyond noting that they represent the correlation between axial
deformations (we have essentially shown the symmetry of shear). Let’s fix that
by putting all the expansion into a single, uniform term:

D =

(
1

3
∇ · u

)
I +

(
D −

(
1

3
∇ · u

)
I

)
= S +D′.

(13)

This expansion term is sometimes called the ‘spherical’ part, or ‘rate of ex-
pansion’ tensor, whilst adjusting our leftovers into D′ yields a deformation at
constant volume, sometimes called the ‘deviatoric’ part or ‘rate of shear’ tensor.
Note the factor of 1/3 required to ensure that tr(S) = ∇ · u and tr(D′) = 0: in
n dimensions we apply 1/n of the divergence to each diagonal element to create
a uniform expansion.

So, putting it all together, what does the behaviour of our fluid look like
around a point? With

G = S +W +D′, (14)

we have:

u(r0 + δr) ≈ u(r0) +

(
1

3
∇ · u

)
δr+

1

2
ω × δr+D′δr, (15)

representing:

• u(r0): moving with the flow;

•
(
1
3∇ · u

)
δr: uniformly expanding away from r0;

• 1
2ω × δr: rotating around r0 with angular velocity 1

2 |ω| and axis ω̂; and

• D′δr: shearing at r0.

1In the case of ρ not constant, we gain a material derivative term (after all, we are literally
following the blob) in dm/dt of

∫
(∂ρ/∂t + u · ∇ρ)dV , and we can merge the u · ∇ρ into the

deformation term for the more traditional-looking form ∂ρ/∂t + ∇ · (ρu) = 0. We still go
home satisfied that maths is not yet broken.
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