
Why is angular velocity a vector?

Andrew Guy∗

In the Engineering Tripos IB “Vector Calculus & PDEs” course, students are
asked why angular velocity is a vector despite finite rotations being obviously
not. The lectures teach that it is a “pseudo-vector” due to it requiring a “sense”
to work properly (the right-hand rule). Despite having studied vector calculus
and having a good understanding of physical processes, students arrive at Part
II modules (such as 3M1: Mathematical Methods) not actually knowing what a
vector is.

In supervisions, I tend to explain it as “angular velocity is a vector because
infinitesimal rotations are, and we can get to these from suitably small chunks
of time”.

Finite rotations as not-vectors

Encode a finite rotation as a ‘vector’ (it’s not, we’re just borrowing the colloquial
word for a tuple) v = uθ: let the axis u be a unit vector and the angle θ, and
we’ll use a right-handed convention. By considering the effect of the rotation on
a vector in the axis direction, and on those in the plane perpendicular to it, you
should be able to conclude that we may produce a rotation matrix Q = f(v) as:

Q = (cos θ)I + (sin θ)[u]× + (1− cos θ)uu⊺ (1)

where the notation [u]× represents the “cross product matrix”:

[u]× =

 0 −uz uy

uz 0 −ux

−uy ux 0

 (2)

i.e., for any vectors u, v we have [u]×v = u× v.

Infinitesimal rotations

Considering a small rotation we have cos θ ≈ 1 and sin θ ≈ θ. So we are left
with:

Q = I + θ[u]× (3)

and it may be helpful to think of the angle as θϵ, where ϵ is a nilpotent element
such that ϵ2 = 0 — when we multiply things this will behave like we are used to
when multiplying infinitesimals, where we argue that we may always make cross
terms negligibly small by choosing a small enough length scale. This deals with
the first potential point of confusion: that whilst we can choose arbitrarily large
numbers to live within these matrices (and our “infinitesimal rotation vectors”
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will span the entirety of R3), the “order of realisation” matters. Since we realise
the angular velocity vectors first, no matter how big they are we can always
choose a small enough time step that our approximation holds to any desired
tolerance1.

Let’s create two infinitesimal rotation matrices, P = f(uθ) and Q = f(vϕ),
and multiply them together, remembering that θϕ = 0:

PQ =

 1 −uzθ uyθ
uzθ 1 −uxθ
−uyθ uxθ 1

 1 −vzϕ vyϕ
vzϕ 1 −vxϕ
−vyϕ vxϕ 1


=

 1 −vzϕ− uzθ vyϕ+ uyθ
uzθ + vzϕ 1 −vxϕ− uxθ
−uyθ − vyϕ uxθ + vxϕ 1

 (4)

and the other way:

QP =

 1 −vzϕ vyϕ
vzϕ 1 −vxϕ
−vyϕ vxϕ 1

 1 −uzθ uyθ
uzθ 1 −uxθ
−uyθ uxθ 1


=

 1 −uzθ − vzϕ uyθ + vyϕ
vzϕ+ uzθ 1 −uxθ − vxϕ
−vyϕ− uyθ vxϕ+ uxθ 1

 (5)

So we see that not only does this commute (PQ = QP ) but more importantly,
we have

f(uθ)f(vϕ) = f(uθ + vϕ) (6)

and that f does not do anything fancy with the magnitude and unit axis of the
rotation — we assign a unique infinitesimal rotation vector to a unique infinites-
imal rotation matrix simply by placing its components in the off-diagonals in a
skew-symmetric way.

What are vectors, anyway?

We start by defining a group as a set G and an operation ◦ : G ×G → G such
that

• The operation is closed in G: (∀a, b ∈ G)a ◦ b ∈ G.

• The operation is associative: (∀a, b, c ∈ G)a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• There is an identity element e ∈ G such that a ◦ e = e ◦ a = a.

• Each element has an inverse: (∀a ∈ G)(∃a′ ∈ G)a ◦ a′ = a′ ◦ a = e.

A vector space is a set of vectors V over a field F . It has an operation which
behaves like a group (so for R3, the identity is 0, the operation is addition,
inverses are v′ = −v), but it also requires the following:

• The group operation is commutative: (∀a, b ∈ G)a ◦ b = b ◦ a. (A group
whose operation commutes is referred to as Abelian. Fortunately for us,
addition in R3 commutes.)

1Essentially, it’s a loaded game: you have to commit to a number before I do, so I always
win. And unlike in the playground, you can’t respond with “No times infinity plus one”.
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It also allows scalar multiplication, which sends F × V → V . The rules for
this make it a module over F :

• Scalar and field multiplication are compatible: (∀a, b ∈ F )(∀v ∈ V )(ab)v =
a(bv).

• Scalar identity behaves as expected: (∀v ∈ V )1F v = v, where 1F is the
multiplicative identity of the field (for our purposes, the field is R, and
the identity is 1).

• Scalar multiplication distributes over the vector group operation: (∀a ∈
F )(∀u, v ∈ V )a(u ◦ v) = au ◦ av.

• Scalar addition distributes over scalar-vector multiplication: (∀a, b ∈ F )(∀v ∈
V )(a+ b)v = av ◦ bv.

Clearly, we have R3 being a vector space. You are all happy with vectors
behaving like this, even if you had never considered the algebraic structure of
what it was underneath: it is intuitive.

Infinitesimal rotation matrices form a vector space

Now consider the space of all infinitesimal rotation matrices, with the group
operation of matrix multiplication. We have already seen that these matrices
commute, we already know that matrix multiplication associates, and obviously
the identity element is I. It is not difficult to show that

f(v)f(−v) = I = f(0) = f(v − v), (7)

i.e., not only does the space of infinitesimal rotations form a group, but we also
have a function f which preserves the group structure.

We take a little more care to define scalar multiplication correctly, but we
can see that multiplying the off-diagonal elements behaves as required: if we
multiplied the diagonal elements we would get a matrix which is not of the form
I + [v]×, and therefore not an element of the space. In this way, we find that,
if:

αP = αf(v) =

 1 −αvz αvy
αvz 1 −αvx
−αvy αvx 1

 = f(αv) (8)

and we can trivially check that this satisfies the laws of compatibility, identity,
and distribution (remembering that our equivalent of addition is matrix mul-
tiplication). Not only that, but we may also perform these operations on our
original R3 vectors as well, then transform by f and get the same result — f
also preserves the laws of scalar multiplication!

Time for some terminology. We can say that these two spaces are homomor-
phic (transliterated: “of the same form”, but this is supposedly a mistranslation
of the true meaning, “of similar form”); f is therefore a vector space homomor-
phism. Even better — we can invert the mapping by repopulating our vector
in R3 from the off-diagonal elements, so we may call them isomorphic (of equal
form). A function which maps elements one-to-one (injective, injectivity, an
injection) and hits each element of the target space (surjective) has an inverse
in the sense you are used to and is called a bijection.
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In any case, if the form in which it acts on things looks like a vector space
and you can map it isomorphically to another representation, then the other
way of representing it is uncontroversially a vector space.

Angular velocity and infinitesimal rotations

Now we are ready to convince ourselves that angular velocities are actually
vectors, and we’ll clarify how the ‘pseudovector’ and ‘sense’ terminology fits in.
Recall that an angular velocity is the rate of rotation around an axis:

ω =
dθ

dt
u (9)

and since dθ/dt may be arbitrarily large, ω ∈ R3. Generate an infinitesimal
rotation by multiplying by some δt to get ωδt = δθ. Now, using our rules from
earlier we may add two angular velocities by pulling out factors of δt and show
that we may also pull the δt from our composed matrices. This of course also
works with scalar multiplication.

So what about the term ‘pseudovector’? Essentially, it comes down to the
way in which we have defined f . If we had used a left-handed coordinate system,
or added in a coordinate permutation along the way we could have defined our
mapping between vector and matrix elements differently, but it wouldn’t have
affected the the algebraic equivalence. So this is what the lecturers are referring
to when they talk about the ‘sense’ in which the rotation is defined impacting
the definition of angular velocity as a vector, because there’s enough ambiguity
in there that you need to be consistent for them to act meaningfully on things.
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