
Companion Notes for 3F2: Systems and Control

Andrew Guy

The thoughts that occur to me or things that have confused students, ordered by which question we were
looking at when the words started falling out of my mouth. Caveat lector : this may contain errors, is
mostly devoid of references and is not yet complete (particularly for EP3).

Version 1
April 12, 2023

Examples Paper 1

Question 1

Key points:

• Remember that blocks in the block diagram are transfer functions from one signal to another. Don’t
be afraid to write down equations relating every signal in the information given, then assemble the
diagram from those — you can always go back later and lump blocks together.

• For equations of motion of order n with respect to time ∂n
t y = g(y, ∂ty, . . . , ∂

n−1
t y) we need to keep

n state variables for the derivatives xi = ∂i−1
t y for 1 ≤ k ≤ n in our state vector x, we get n− 1 of

the derivatives in ẋ for free by just shifting them along (ẋi = xi+1 for 1 ≤ i < n, and a block of A
will be In−1) and ẋn = g(x). We can start our block diagram with a chain of n integrators to get
our signals ∂n

t y → y, then add connections from those signals to make up the dynamics.

x =

y
∂ty
...

∂n−1
t y

 ẋ =

x2

...
xn

g(x)

 A =

1

. . .

1
∂g
∂y

∂g
∂(∂ty)

. . . ∂g

∂(∂n−1
t y)

• When deriving a state space model, if a candidate state variable can be expressed in terms of the
others then it is not a state variable.

• Remember to revise the implicit function theorem for F (ẋ, x, u) = 0: set ∂F
∂x δx+

∂F
∂ẋ δẋ+

∂F
∂u δu = 0

at your equilibrium point (ẋ, x, u) = (0, x0, u0).

So, for x = [θo, θ̇o] = [x1, x2] and Jθ̈o = τ we will have a block 1
Js from output shaft torque to θ̇o = x2 and

1
s to θo = x1. From there, the connection diagram remains mostly intact with the exception of needing to

measure motor speed θ̇m. As we have the relationship nθ̇o = θ̇m, we can detach the link from the motor
output to the feedback path kdkt and reattach it at θ̇o by inserting a block to multiply it by n.

Question 2

Bet you thought you could leave electronics behind, huh?

• For real world systems, good candidates for state variables are things that store energy (and a good
candidate for proving stability is showing that total system energy is dissipated). For the state
variable, choose whatever gets squared in the energy term:

Component Energy State variable
Capacitor 1

2Cv2 v
Inductor 1

2Li
2 i

Mass 1
2mẋ2 ẋ

Spring 1
2kx

2 x

The reason will become clear once you take 4F2, but if you view the evolution of the state using
a flow field analogy with u = ẋ (where u is the fluid velocity), then by taking the total energy of
the system in a state as V (x) our material derivative (time-independent, so u · ∇) of system energy
becomes f(x) ·∇V (x). Try showing that the total energy of a mass-spring system without damping
remains constant using this method, then add a damper and show that energy is always dissipated.

1

• The universe hates differentiators: suppose the spectrum of a signal has bounded tail k 1
ω0.5+ε <

|F (ω)| < K 1
ω0.5+ε for ε > 0, k < K and ω > ω′. Then the total signal energy associated with the

tail
∫∞
ω′ |F (ω)|2 dω < ∞, but putting it through the differentiator yields

∫∞
ω′ ω

2|F (ω)|2 dω, which for
suitably small ε or enough differentiators places unbounded energy in the high frequency parts of the
filtered signal. You can approximate differentiators in the low frequency range, but this behaviour
must eventually break down.

• Another pretty good reason that we don’t like direct differentiators is that we then link ẋ = f(u̇),
and our model doesn’t actually place any guarantees on the differentiability of our input signals at
all (we only require enough integrability for

∫ t

0
eA(t−τ)Bu(τ) dτ to be meaningful). Differentiators

don’t break causality: they only provide a guess of future input at a point in time and can be
estimated arbitrarily closely using backward differences, but do not actually pull any information
from the future.

The modern control theorist may wish to exploit the fact that the theory based on ẋ = f(x, u)
does not require u to be differentiable, and control their system by doing some computation on a
microcontroller and setting a constant value of ui(t) = ui

kUi(t − k∆t) for k∆t < t ≤ (k + 1)∆t,
where ui

k is the computed level on input i at sampling point k and U(τ) a shape function over the
holding interval (which in the ideal case might be H(τ) − H(τ − ∆t) for unit step H). There’s
nothing special about t = 0, so we have:

xk+1 = eA∆txk +

∫ ∆t

0

eA(∆t−τ)BU(τ)uk dτ.

As long as ∆t is constant, the state transition matrix doesn’t change and the input contribution
can be split into a set of linear transfer functions Γij from ui

k → xi
k+1 dependent on ∆t, B, U(τ)

and eAt to yield xk+1 = Φxk + Γuk. More on this later.

(ii) Adding a series resistance decouples the derivative of voltage across the capacitor from the input
derivative, as we now have i = Cẋ = (u− x)/R instead of ẋ = u̇. Your real world circuits have this
tiny resistance in them anyway, maybe you can try modelling the effect at higher frequencies.

(iv) When faced with a scary looking circuit like this, the best bet is to ignore anything they’ve not given
component values for and charge ahead as though it has absolutely no impact on the behaviour,
because it probably doesn’t.

Question 3

• Remember to differentiate the equations of motion at the equilibrium point, even though it might
feel wrong! Our expansion around x0, u0 is given by

f(x0 + δx, u0 + δu) = f(x0, u0) +
∂f

∂x
(x0, u0)δx+

∂f

∂u
(x0, u0)δu+O(δ2),

and the matrix element Aij =
∂fi
∂xj

(x0, u0).

• Block matrix inversion: maybe you get a matrix that can be nicely decomposed into blocks. Then
if A,D are invertible:[

A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]
.

In the general case we only need either A or D invertible as long as D−CA−1B or A−BD−1C is
also invertible (the Schur complement, if you draw the block matrix as mappings between two pairs
of spaces you’ll see that there’s the direct path x2 → y2 via D and x2 → y1 → x1 → y2 via CA−1B,
allowing us to precompensate the component of x1 → y2 in the right hand matrix, leaving a block
diagonal matrix to invert), but the expression becomes too tedious to memorise. I expect you’ll be
given any matrix inversion tricks required in the exam, it’s not a test of memorising obscure linear
algebra identities.

2

In this case, x3 = θ̇, ẋ3 = θ̈ = f3(x, u) is given in the question preamble and x2 = z − a so we have

A3,2 = ∂(θ̈)
∂(z−a) |x0,u0

. We also have here

sI −A =

[
sI −I
−P sI

]
,

thus

(sI −A)−1 =

[
(sI − s−1P)−1 0

0 (sI − s−1P)−1

] [
I s−1I

s−1P I

]
(I’m not solving this though, it’s still far too much effort.)

Question 4

No comments, so let’s go over G(s):

• The Neumann series: let T be an operator and S =
∑∞

k=0 T
k. Using the exact same trick from

regular algebra, multiply by T and take the difference: (I − T)S = I − limk→∞ T k. Provided that
∥T∥ < 1, we have (I − T)S = I, or that (I − T)−1 =

∑∞
k=0 T

k.

• That L{eAt} = (sI − A)−1. Bash the expression into the Neumann series by pulling out an s:
s−1(I − A

s)
−1, then expand to get:

(sI −A)−1 =

∞∑
k=0

Ak

sk+1
.

Note that L{tk} = k!
sk+1 , and inverse transform each term of the series.

L−1{(sI −A)−1} =

∞∑
k=0

Aktk

k!
=

∞∑
k=0

(At)k

k!
,

which by the definition of e(·) =
∑∞

k=0
(·)k
k! yields eAt.

• Once you’re happy with eAt ⇆ (sI − A)−1, you can just use the fact that multiplication in s is
convolution in t to justify

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ) dτ,

or you can use the real-space justification of the system evolving on its own and the effect of inputs
being weighted by the impulse response of the system at the time since they occurred.

Question 5

• Wherever possible, diagonalise your system. There are many equally crap ways to compute eAt,
but if A has an eigenbasis then nothing beats transforming it to the diagonal form, letting the
eigenstates evolve independently of each other and recombining them when we need to do things
in real space again.

Problem-specific notes:

(a) Remember that for the system ẋ(t) = Ax(t), x(0) = x0 where Ax0 = λx0, we can instead express
x(t) as α(t)x0 with α(0) = 1. Now our equation of motion becomes ẋ(t) = α̇(t)x0 = λα(t)x0, giving
our classic ODE α̇ = λα and the solution x(t) = eλtx0.

• Let A have an eigenbasis defined by AV = V Λ, then express our initial state x(0) =
∑

i αivi.
As each state evolves independently, we have x(t) =

∑
i αie

λitvi (if we represent αi(t) =
αi(0)e

λit, this is eΛtα(0), where α(0) = V −1x(0)). Hence, eAt = V eΛtV −1.

(b) • Get good at doing partial fractions. Remember that repeated roots expand to terms which
transform back to polynomial terms in t up to one degree less than their multiplicity.

3

• When complex eigenvalues show up, leave them in their quadratic form and look to pattern
match the numerator (bs+ c) to the Laplace transform pairs:

e−αt sinωt ⇆
ω

(s+ α)2 + ω2

e−αt cosωt ⇆
s+ α

(s+ α)2 + ω2
.

Take however much cos you need to match the bs, then make up the difference in the c term
with sin.

• Non-zero equilibrium requires finding x ̸= 0 such that ẋ = Ax = 0, so we’re looking for the
null space of A. A condition for this is that detA = 0 and in this case the null space is obvious,
but the exam may not be so nice!

Question 6

(a) More diagonalisation. Drawing our little first order expansion diagram of messy, skewed real space
and perfect, neatly orthogonal eigenspace:

.
x0

ẋ = f(x0, u0) = 0

.x0 + δx

ẋ = f(x0 + δx, u0 + δu)

= f(x0, u0) +
∂f

∂x
(x0, u0)δx+

∂f

∂u
(x0, u0)δu+O(δ2)

≈ Aδx+Bδu

.
x0

.
x0 + z = x0 + T−1δx

ż ≈ Λz +Bδu

Note that x0 is preserved! We’re only distorting the local volume around x0. Now rename x :=
δx, u := δu to get rid of the annoying delta terms. We’ll use the convention x = Tz to represent
the fact that z is the preferred form of the system and x is the transformation of that. Giving the
game away slightly by naming A = Λ, but the transform that diagonalises A satisfies AT = TΛ, so
a little algebraic manipulation to express x in terms of z yields ż = T−1ẋ = T−1Ax + T−1Bu =
T−1ATz + Bu = Λz + Bu. Remember that if we start on an axis in eigenspace we stay on that
axis and all the eigenstates evolve independently of each other, whereas in real space every state is
continuously influencing the evolution of every other state. When it comes back to the real world and
we need the outputs, we can go fishing from real space into eigenspace and get y = Cx = CTz = Cz.

(b) We can round trip the system by going x(0)
T−1

−−−→ z(0)
eΛt

−−→ z(t)
T−→ x(t), giving our relationship for

eAt = TeΛtT−1.

Question 7

(b) Some guidelines for sketching:

• To get the rotation direction of an equilibrium point with complex eigenvalues, just pick a
point with a small offset and plot f(x) or Aδx. Make life easy for yourselves by aligning your
offsets with the axes and just plotting the matrix columns. Don’t put massive amounts of
effort in, just draw a bunch of swirls going into or out of the point depending on the sign of
ℜ(λ).

• Otherwise, sketch the eigenbasis axes at the point with arrows showing the direction of motion
on them, then draw some sweeping trajectories into, out of or saddling this point depending
on the signs of λi.

• If the point has some special properties such as uniform expansion or circular motion, make
sure to highlight this to the examiner with a little note.

4

• Don’t put massive amounts of effort in unless instructed to, just tell the examiner a convincing
story about the trajectories by linking together the regions of influence of the points you have
computed.

(c) If the equilibrium point is stable for a parameter range γ ∈ [a, b], but the point x0 = x0(γ), then as
long as you start the system at x(0) near enough to x0(γ(0)) and change γ(t) slowly enough, the
trajectory will remain near x0(t). How near? How slow? I don’t know, but there always exists a
distance small enough that the higher order effects are overwhelmed. Take 4F2 and find out just
how little we can say in general.

• The concept of Lyapunov exponent: we might want to place a bound on the distance between
two system trajectories at time t given that they started δx(0) = x1(0)−x0(0) apart. Locally,
we will have the bound ∥δx(t)∥ ≤ eλmaxt∥δx(0)∥. In this course, we’re mostly interested in
x0(t) = x0 for an equilibrium point.

Examples Paper 2

Question 1

(b) Remember that in the general case we may have multiple eigenvalues {λi : ℜ(λi) < 0} with associ-
ated eigenvectors Avi = λivi, then our general form for a stable x0 is

∑
i αivi. If you have calculated

the eigenvectors, write it out as αv1 + βv2 + . . . , maybe even explicitly in column notation.

Question 2

This question is an exercise in boxing/unboxing systems, manipulating the time derivative and converting
to Laplace transforms. It’s good practice to get comfortable with both the boxed G(s) form and explicitly
laying out the individual components of the system, as we will later be tapping off from x̂ and feeding in
to ˙̂x when we do observers.

• The identity A(I + BA) = (I + AB)A may be useful to remember here: if in doubt, pull out the
factor of A on either side of A+ABA.

• A related and equally useful identity that shows up when you have a system G in negative feedback
with a controller K: G(I +KG)−1 = (I +GK)−1G.

Question 3

No comments, which means it’s time for a rambling aside about root loci. I can’t find a source for any
of this, so you’ll just have to trust me.

Let’s start with
d(s) + kn(s) = p(s, k) = β

∏
i

(s− αi(k))

for our roots αi as a function of k. I think the lecture notes do a good job of covering the behaviour
of k → 0 and k → ∞, so I won’t go over that again. Note that if deg d(s) > deg n(s), β is determined
entirely by the leading order term of d(s).

Right, let’s suppose we have αi(k) for a particular value of k and that the particular αi in question
is isolated. What happens when we change k? From the same principle as used to derive the linearised
equations for an implicit system, we have p(s, k) = 0 where we view p(s, k) : C × R → C as a restricted
set of functions with special rules from something that looks like R2 × R → R2: x+ iy, k → u(x, y, k) +
iv(x, y, k). So our complex derivative ∂p

∂s is actually a Jacobian J , and by the implicit function theorem
we have:

∂α

∂k
= −J−1 ∂p

∂k
.

Well, ∂p
∂k = n(s) and ∂p

∂s = d′(s) + kn′(s). Let’s start with some properties of J .
Holomporphicity. A holomorphic mapping is a function which is complex differentiable everywhere on

its domain. It satisfies the Cauchy-Riemann equations ux = vy; uy = −vx (where the subscript denotes
partial derivatives), meaning that its Jacobian is a rotation and scaling. Conformality. A mapping is
conformal if it preserves angles at a point. They are holomorphic with the constraint that the derivative
is non-zero.

5

• If f(s), g(s) are holomorphic, then h(s) = f(s) + g(s) is holomorphic (trivial).

• If f(s), g(s) is holomorphic, then h(s) = f(s)g(s) is holomorphic. For our transform now becomes:

u∗(x, y) = U(x, y)u(x, y)− V (x, y)v(x, y)

v∗(x, y) = V (x, y)u(x, y) + U(x, y)v(x, y),

with the associated Jacobian

J∗ =

[
Uxu+ Uux − Vxv − V vx Uyu+ Uuy − Vyv − V vy
Vxu+ V ux + Uxv + Uvx Vyu+ V uy + Uyv + Uvy

]
=

[
Uxu+ Uux + Uyv + V uy Uyu+ Uuy − Uxv − V ux

−Uyu+ V ux + Uxv − Uuy Uxu+ V uy + Uyv + Uux

]
=

[
a b
−b a

]
• f(s) = s is holomorphic (J = I).

• Conclusion: polynomials in s, such as p(s, k) at fixed k, are holomorphic.

What does this mean for root loci? Well, if J is invertible then we can take ∂α
∂k meaningfully, and we get

a differentiable trajectory as a function of k: we come into a point in the opposite direction to how we
leave it. Remember also that a rotation and a scaling is exactly what a complex number in rejθ form
does, so our derivative itself is just a complex number D and the inverse is just 1/D. What about when J
cannot be inverted? This requires that ∂p

∂s = 0, and conformality is lost. This is the only way that certain
structures could occur, such as kinks in the root locus diagram like at breakaway points. So let’s close the

loop now: let k0 = − d(α0)
n(α0)

where conformality is lost, and plug into p′(α0, k0) = d′(α0)− d(α0)
n(α0)

n′(α0) = 0.

Rearranging, we find that α0 solves d(s)n′(s) − n(s)d′(s) = 0, which is just the numerator part of the
condition dL

ds = 0 that you’ve already seen.
More generally, anywhere that p(s, k) has repeated roots is degenerate at the repeated roots:

p(s) = (s− α0)
n
∏
i

(s− αi)

p′(s) = (s− α0)
n−1

(
n+

∑
i

s− α0

s− αi

)∏
i

(s− αi)

including any repeated poles and zeros (think about how the behaviour changes near repeated poles
around k = 0 with both positive and negative k). What happens in the vicinity of multiple roots? Can
multiple roots move together, i.e. αi(k) = αj(k) for k0 < k < k1? Can the same root appear for separate
values of k? That last one is easy to answer: for if α0 solves d(s) + k1n(s) = d(s) + k2n(s) = 0, then we
have d(α0) and n(α0) on both sides and thus k1 = k2. So contours on the root locus diagram can never
self-intersect.

Roots moving together would require a continuum of points at which α(k) fails to be differentiable
with respect to k, yet we have only a finite number of these points as dL

ds has a polynomial numerator.
So we can conclude that any point at which roots come together also requires them to leave, i.e., that
the point is isolated.

Finally: when can a trajectory stop? This would require ∂α
∂k = 0, which can only be when ∂p

∂k =
n(s) = 0. So the only locations where the trajectories stop moving are the open loop zeroes.

Question 4

• Let’s tie Part I vibrations into root locus theory. When ζ = 1 we have critical damping, which you
will recall means that we have repeated roots and any less damping will lead to oscillations. On
the root locus diagram, we have repeated roots at a breakaway point and any less damping will
lead to the roots moving away from the real axis, gaining an imaginary component and leading to
oscillations. Any more damping and the roots move away from each other, giving us the standard
two mode decay of an overdamped system, and extreme values lead to one very slow and one very
fast mode as one root goes to zero and the other to infinity.

6

Question 5

• Final value theorem and steady state error: in Part I you were taught that zero steady state error
requires the system to have an integral response. But this system has an integrator, and yet there’s
still a steady state error! Why?

Suppose L(s) = N(s)
D(s)sn , where we have pulled out all our excess integrators (n of them) explicitly

from the remaining poles. The error

ẽ =
1

1 + kL(s)
r̃ =

D(s)sn

D(s)sn + kN(s)
r̃,

and our reference signal r(t) = ta transforms to r̃(s) = a!
sa+1 . Applying the final value theorem:

lim
t→∞

e(t) = lim
s→0

sẽ(s) = s
D(s)sn

D(s)sn + kN(s)

a!

sa+1
=

D(s)a!

D(s)sn + kN(s)

sn+1

sa+1
.

The condition for this limit to go to 0 is that n > a, or, that we have one more integrator in our
system than the degree of the reference signal.

Examples Paper 3

This paper tends to pose few practical problems, just that students don’t know why they’re doing it. The
lecture notes are pretty chaotic, so here’s how I view the content covered.

Theory, continuous time

Cayley-Hamilton and eAt

Cayley-Hamilton theorem allows us to write Ak =
∑n−1

i=0 αk,iA
i for k ≥ n, where the αk,i is understood

as being the contribution from the term k to the term i. We’re not particularly interested in the values
of αk,i, just that they exist. Write out the definition of eAt:

eAt =

∞∑
k=0

tkAk

k!
,

and apply Cayley-Hamilton to the terms of k ≥ n to move their contribution down to the first n terms:

eAt =

n−1∑
k=0

(
tk

k!
Ak +

∞∑
m=n

tm

m!
αm,kA

k

)

=

n−1∑
k=0

(
tk

k!
+

∞∑
m=n

tm

m!
αm,k

)
Ak

=

n−1∑
k=0

βk(t)A
k.

Some facts about βk that we will save for later:

• No βk is identically zero over any finite interval 0 ≤ t ≤ T , as each βk is a power series and has at

least one non-zero coefficient in tk

k! .

• No βk can be expressed as a linear combination of the other βi̸=k, as each βk is the only one that
has a term of tk.

Some facts that we will not do much with yet, but a future version of the companion notes might:

• β0(0) = 1, βk ̸=0(0) = 0.

• The relevant βk are continuous. For eAt converges everywhere, so for βk to not converge at a point
we must be able to express Ak as a sum of other powers of Am. In this case distribute Ak over
the remaining terms until this can no longer be done, then the surviving βm are power series which
converge everywhere, hence are continuous.

7

Observability

Rather than take derivatives of y at a point in time, I prefer the alternative view of observability: if
we watch the system evolve over a finite time interval [0, t], can we deduce the initial condition x0 (and
hence all future output)? Note that this is independent of our notion of observing as we probably would
in practice by finite time sampling (that comes later), and we jump straight to the idea of feeding the
output into an observer system: these evolve continuously with time and so can “feel” everything from
y(τ) over the interval.

With with our output at time τ : y(τ) = CeAτx0, we apply Cayley-Hamilton and find:

y(τ) =

n−1∑
k=0

βk(τ)CAkx0.

There are two ways that a state x0 could not show up in the output. Firstly, it could only be in the row
space of CAk for specific powers of k, but these powers are zeroed out by βk: we have already established
that this is not possible for all time over a finite interval. The only remaining way for information
to disappear is that it lies in the null space for all CAk, yielding our Q test and the corresponding
decomposition that the observable subspace is the row space of Q and unobservable subspace is the null
space of Q.

Controllability

Suppose we have a target state that we wish to achieve at some time t after we set it going x∗(t) and
an initial state x0. We need to find an input u(τ) such that we make up the difference between how the
initial state evolves and the target state:

x∗(t)− eAtx0 = ∆ =

∫ t

0

eA(t−τ)Bu(τ) dτ.

Apply Cayley-Hamilton, and exploit linearity to swap the order of summation and integration:

∆ =

n−1∑
k=0

AkB

∫ t

0

βk(t− τ)u(τ) dτ,

i.e., the attainable perturbation from the natural evolution of the initial state is a sum of the columns of
P , and the remaining question is whether we can find u such that we can exactly control ∆. The first
way that a column could not contribute to the final state regardless of the input is if the associated βk

was equal to zero over the whole interval, but this has already been excluded.
Whilst I would like to denote the time reversed version of βk as βk

or βk , this makes typesetting
difficult so I will instead use bk(τ) = βk(t − τ). Then our integral of the ith input can be seen to be an
inner product

(bk, ui) =

∫ t

0

bk(τ)ui(τ) dτ.

For r = rank(P) arbitrary columns in P that span the reachable space (column space of P), we want to
fashion an input that excites that column alone and nothing else. There’s certainly something to excite:
bk is continuous and not identically zero, so it is non-zero with consistent sign and magnitude bounded
below over a subinterval of [0, t], giving the existence of a target location for us to apply an input function
and get something out of the integral. Suppose that one such column is the ith column of BAj and we
need an amount α of this column to build ∆. Then we wish for a function ũj such that (ũj , bj) = 1 and
(ũj , bk) = 0 for j ̸= k, or that ũj is orthogonal to the other bk, and we will apply αũj to ui.

To get our functions ũj , we will use Gram-Schmidt orthogonalisation for each function in turn: reorder
the functions to put bj as the nth function in the set {bk} and progressively remove components of the
remaining functions:

a1 = b1

ai = bi −
∑
k<i

(ak, bi)

(ak, ak)
ak,

then set ũj = an

(bj ,an)
to achieve our unity scaling. Remember that the intermediate functions ai are

there to account for the fact that the intermediate (bi, bj) terms may not be zero, so it is not enough

8

to just progressively remove the component of bi in isolation as we may reintroduce previously removed
components in the process. Here we reach our final possibility for a column of P to go missing from
the final state: that an = 0, i.e., there is nothing left over after removing the components of the other
bk. This would require bj to be a linear combination of the other bk, but fortunately we have had the
foresight to establish that this is not the case already.

Thus we can conclude that for any time interval [0, t], we can perturb our state at t by any amount
∆ that can be expressed as a linear combination of the columns of P .

Gramians

Note that the tests on P,Q are an existence test: they tell us that for any finite time interval [0, t] we can
identify the observable states and we can reach the controllable (hence the alternative name reachable)
states. What they don’t tell us is whether our proposed strategy is a good idea:

• Are we looking for a signal that is drowned out by other signals?

• Are our chosen P columns particularly stubborn, and would we do better to mix and match different
amounts of all the columns at varying times?

• If we accepted a longer observation period or slower movement to our final state, could we make
life easier?

You’ll need to remember the minimum energy control law, as you don’t have the tools yet to even start
deriving it in the exam if you forget it. You’ve seen the verification that it does indeed get us from A to
B and is the minimum energy control law, so for now that should be enough. When you’ve taken 4M12
and know how to use variational methods, the extra lecture slides cover how to derive it.

Theory, discrete time

In discrete time, our transition matrices are fixed by ∆t to be Φ = eA∆t and our selected input shape

functions u = U(τ)uk over the kth interval Γ =
∫∆t

0
eA(∆t−τ)BU(τ) dτ , to yield the update rule xk+1 =

Φxk + Γuk.
Now it is possible for things to go missing: remember that before we relied on the fact that we were

dealing with a function over an interval, so the fact that βk(τ0) = 0 was countered by the fact that we
knew there existed other points in the interval where it was non-zero. Our output at point k arising from
x0 is given by

yk = CΦkx0,

so we again apply Cayley-Hamilton to terms of k ≥ n and shift it down into the lower range:

yk =

n−1∑
i=0

ϕk,iCΦix0

for contributions ϕk,i. We can therefore see that our observable states span the row space of a new Q
matrix formed of CΦk powers, and that if a state hasn’t shown up after n iterations it’s not showing up
at all!

Controllability: the input from u0 gets filtered into xk as Φk−1Γu0, which again we can apply Cayley-
Hamilton to and conclude that our reachable states are the columns of P = [ΦkΓ]. Fashioning the
required input is much easier in this case, as we just need to pick the columns of P and apply a pulse to
the ith element of u at k timesteps before our target. Note that in both cases the relevant columns of P
and rows of Q mean that we might not be able to achieve or see certain states for all k < n, although
everything after that is doable.

Observable and controllable subspaces

There’s an arrow missing in the diagram from the observable/uncontrollable subspace to the observ-
able/controllable subspace. Arrows indicate influence (non-zero blocks of Ã): controllable states can’t
influence uncontrollable states, and unobservable states can’t influence observable states.

9

Remember that when doing your decompositions, if you have Rn = U ⊕ V for subspaces U, V of
dimension a, b with a chosen basis {ui}ai=1, {vj}

b
j=1, then to represent a vector as a linear combination

of these basis vectors x =
∑a

i=1 αiui +
∑b

j=1 βjvj :

x =

 ↑ ↑ ↑ ↑
u1 . . . ua v1 . . . vb
↓ ↓ ↓ ↓

α1

...
αa

β1

...
βb

=
[
Tu Tv

] [x̃u

x̃v

]
= T x̃,

hence our transform x → x̃ being T−1.

Question 4

Just because you can get to a state x∗ using a subset of the inputs doesn’t mean you can keep it there
continuously, as you’ll see when using T2 alone for control. But what can you do?

• Keep some states there continuously: we need to set ẋ = Ax + Bu = 0, so any states where Ax∗

lies in the column space of B can be kept there.

• Pick a time t, and apply an input u∗(τ) such that
∫ t

0
eA(t−τ)Bu∗(τ) dτ = (I − eAt)x∗. You can

therefore return to x∗ with period t, for arbitrarily small t. For some systems, the describing
function approach covered in 4F2 may help you see how the universe foils our plans for infinitely
high frequency oscillations and can be used to work out the frequency of limit cycles in the presence
of nonlinearities.

• I have a strong suspicion—but not enough time to prove it—that by picking t small enough we can
stay arbitrarily close to x∗.

10

